a2 United States Patent

US009471303B2

10) Patent No.: US 9,471,303 B2

Zhou et al. 45) Date of Patent: Oct. 18, 2016
(54) FA¢ADE FRAMEWORK FOR IDE (56) References Cited
(71) Applicants: Yiquan Zhou, Singapore (SG); Ludo U.S. PATENT DOCUMENTS
Franciscus Maria Noens, Singapore 2006/0277231 Al* 12/2006 Kral .occoocooervvrevrrirn, GOGF 8/70
(SG); Qiushi Wang, Singapore (SG) 708/102
2013/0047137 Al* 2/2013 Bak ..cccooevvvivviincnns GOG6F 8/71
(72) Inventors: Yiquan Zhou, Singapore (SG); Ludo 717/121
Franciscus Maria Noens, Singapore * cited by examiner
(SG); Qiushi Wang, Singapore (SG)
) Primary Examiner — Hang Pan
(73) Assignee: SAP SE, Walldorf (DE) (74) Attorney, Agent, or Firm — Horizon IP Pte. Ltd.
(*) Notice: Subject to any disclaimer, the term of this 1)) ABSTRACT
patent is extended or adjusted under 35 A framework for developing web and hybrid applications
U.S.C. 154(b) by 0 days. (Apps) of a project is described herein. In accordance with
one aspect, a facade framework is provided. The fagade
(21) Appl. No.: 14/613,381 framework includes a web library having a set of application
) program interfaces (APIs) of hybrid features of a mobile
(22) Filed: Feb. 4, 2015 device, a hybrid library having a set of APIs of hybrid
. L features of a mobile device, and a unified interface for
(65) Prior Publication Data interfacing with the web and hybrid libraries. Base code of
US 2016/0224336 Al Aug. 4, 2016 a base project may be provided usipg an application devel-
opment system. The base code may include common code to
(51) Int.ClL web assets common to the web and hybrid Apps of the
GO6F 9/44 (2006.01) project. The base code may be extended using the applica-
GOGF 9/445 (2006.01) tion development system to produce? an extended gode of'the
project, where the extended code includes hybrid features
(52) US. Cl. used by the project. The unified interface provides APIs
CPCcccue. GO6F 8/71 (2013.01); GO6F 9/44521 T .
2013.01 from the web and hybrid libraries used by the project. The
. . . (01) facade framework enables the extended code to serve as a
(58) g‘}‘:lcd of Classification Search GOGE' 8/20 unified code solution to both web and hybrid App of the

USPC 717/101
See application file for complete search history.

project.

20 Claims, 11 Drawing Sheets

, 458 380
\ 7 Y 160
- i /o am .
80 ! v Ve
] ! ; v
Ii - { / [i -370
452 - Hybric ¢ | 7 7
eatures [Web ' Mockupj ' Hybrid
. o -
R S Ny > < = ;
//l \\\ < :,L\ ey N /// J
; \ / T
O \\ Fa =2 i
/ \ VE
. \ >
/ -7/
i P
- - A ~
e W
Web | Hybrid i oy
Preview | Preview | / \\ -
/ \ : ! .
/ 4 ! i N
=]] \ .
- / \ | | AN
130 d /l 438 ki ! \
437 440 442 444

400

U.S. Patent

135~\

Oct. 18, 2016 Sheet 1 of 11 US 9,471,303 B2

160

’--——“-/

L

N
™.
—
\

150

FIG. 1

130c¢

130b

130 7T 1308

U.S. Patent Oct. 18, 2016 Sheet 2 of 11 US 9,471,303 B2

CEEN
N\
3
(e \\\“
e~
oo
- [
R Ll
o
\\\
ST \
3 \

US 9,471,303 B2

Sheet 3 of 11

Oct. 18, 2016

U.S. Patent

091

RIBWIRD

mmmm uopesnnes SBIABP SINVIV0T
//
08€~ |
ZRE 7
mN\./M T 78 BASIRS Gie
e 9 s R
Lorexess S3AIP SI2RIUOD
A
R I | PP vt
ZLE T e
LE]
] e
018 /

i
f
f
f
f
!
!
WY g m w1 afey
23ue’ } NN,WM
!
.
‘ove| | |
!
!
!
M 23ed
LveE i1 xopu)
densiooq] M T irpe
f
f
f
f
foye !
- §
3 § .
Y L M . H.mmmn
S1083U07 i THE
!
ovE M
!
!
{

US 9,471,303 B2

Sheet 4 of 11

Oct. 18, 2016

U.S. Patent

OLe

¥ 814

00y
€T
a4z Oby | LSV
. \ gey & 4 P
| , /
\, / i]] \\\\
N | \ i
i \,
/ PmeAdUg MBIAR1d
Aoidag Aoidag L puasy oM
PHOAL gem I Pt
3 /X z
\ / P = \
X7 /
- / /
\ /
\\
- / ,
- v L
>~ V.\
PIGAL Gy q4afA $BIMNEDS 51955y
7 ’ 3 pLGAY UBA e 25
i J]
) e M
/ / ,_, ™S
™~ -
/ 06 / \ ~— 051
/ /N /
/ | w
08¢ 85 /
95%

US 9,471,303 B2

Sheet 5 of 11

Oct. 18, 2016

U.S. Patent

ey e e zndl

Bl - SRS

e

1afoad
PIPUIS PUGAH

UOISUBIND PUGAH

~ 015

¥ N

N

ITAS

1wafold aseg

e 505

US 9,471,303 B2

Sheet 6 of 11

Oct. 18, 2016

U.S. Patent

eg "84

o R

US 9,471,303 B2

Sheet 7 of 11

Oct. 18, 2016

U.S. Patent

9 "8l

%.o.n.n..,.....wnnwwnwn.n.w.

US 9,471,303 B2

Sheet 8 of 11

Oct. 18, 2016

U.S. Patent

sirgpenss

&

xﬁ%“m%%xﬁﬁww. e

.““nnn“.“mmwmmmmw“w“mmmmm : “.Ww“N.m.“.“.n.“.“.n.n.“.“.n.“.“.n.“.“.n.n.“.“.n.“.“.n.“.“.n.n.“.“.n.“.“.n.n.“.“.n.“.“.n.“.“.n.n.“.“.n.“.“.n.“.“.n.n.“.“.n.“.“.n.n.“.n.n.“.“... s

US 9,471,303 B2

Sheet 9 of 11

Oct. 18, 2016

U.S. Patent

..""”.””H“.,.,.,.,.,.,.,.,.“.““““w““““““““%HXM,X,X,X,X,X,X&“ ,.

3

U.S. Patent Oct. 18, 2016 Sheet 10 of 11 US 9,471,303 B2

4

:

4
1

e e T

e

AR

U.S. Patent Oct. 18, 2016 Sheet 11 of 11 US 9,471,303 B2

s

Fig. 6f

US 9,471,303 B2

1
FA¢ADE FRAMEWORK FOR IDE

TECHNICAL FIELD

The present disclosure relates generally to a framework
for developing applications (Apps).

BACKGROUND

Apps are developed for a wide variety of purposes. One
type of App is web-based App (web App). A web App, for
example, includes web application code that resides on a
server. The web App is accessed using a browser on an
end-user device. An advantage of web Apps is that they can
be maintained and updated without distributing and install-
ing software on local devices as well as inherent support for
cross-platform compatibility. To develop a web App, a web
integrated development environment (IDE) may be
employed.

Conventional web Apps generally cannot access local
resources, unlike a native App. For example, the web
browser prevents access by the web App to native APIs. In
other words, web Apps are not mobile enabled. Access to
native APIs may be provided through hybrid Apps. Hybrid
Apps are based on a mixture of native application code and
web application code. However, there are still differences in
implementations of web assets.

In the case where an App project requires both a hybrid
and a web App, developers need an additional development
process to ensure that the web assets are compatible and
sound as either a web or a hybrid App. This requires longer
development time for projects requiring both web and
hybrid versions of the App. Furthermore, two code bases
need to be maintained, one for the web version and the other
for the hybrid version of the App. Maintaining two code
bases is prone to errors as well as inefficient use of resources.

The present disclosure relates to a fagade framework used
to effectively and efficiently generate a unified application
code (one code base) for both hybrid and web versions of an

App.
SUMMARY

A framework for developing web and hybrid applications
(Apps) of a project is described herein. In accordance with
one aspect, a facade framework is provided. The fagade
framework includes a web library having a set of web
application program interfaces (APIs) of hybrid features of
a mobile device, a hybrid library having a set of hybrid APIs
ot hybrid features of a mobile device, and a unified interface
for interfacing with the web and hybrid libraries. Base code
of a base project may be provided using an application
development system. The base code may include common
code to web assets common to the web and hybrid Apps of
the project. The base code may be extended using the
application development system to produce an extended
code of the project, where the extended code includes hybrid
features used by the project. The unified interface provides
APIs from the web and hybrid libraries used by the project.
The fagade framework enables the extended code to serve as
a unified code solution to both web and hybrid Apps of the
project.

With these and other advantages and features that will
become hereinafter apparent, further information may be
obtained by reference to the following detailed description
and appended claims, and to the figures attached hereto.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments are illustrated in the accompanying
figures. Like reference numerals in the figures designate like
parts.

FIG. 1 shows a simplified diagram of an exemplary
environment or architecture;

FIG. 2 shows a simplified block diagram of an embodi-
ment of an App development system;

FIG. 3 shows a simplified block diagram of an embodi-
ment of a facade framework;

FIG. 4 graphically illustrates an implementation of a
process of App development;

FIG. 5 illustrates an implementation of a process of App
development; and

FIGS. 6a-f show exemplary screen shots of a Ul of an
implementation of an IDE.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
specific numbers, materials and configurations are set forth
in order to provide a thorough understanding of the present
frameworks and methods and in order to meet statutory
written description, enablement, and best-mode require-
ments. However, it will be apparent to one skilled in the art
that the present frameworks and methods may be practiced
without the specific exemplary details. In other instances,
well-known features are omitted or simplified to clarify the
description of the exemplary implementations of present
frameworks and methods, and to thereby better explain the
present frameworks and methods. Furthermore, for ease of
understanding, certain method steps are delineated as sepa-
rate steps; however, these separately delineated steps should
not be construed as necessarily order dependent or being
separate in their performance.

FIG. 1 shows a simplified diagram of an exemplary
environment or architecture 100. Environment 100 may
have a distributed architecture, such as a client-server archi-
tecture. The environment, in one implementation, includes a
communication network 110. The communication network,
for example, may be the World Wide Web (WWW or Web).
Other types of communication networks or combination of
networks may also be useful.

The environment includes a server 120. A server may be
a computer with a memory and a processor. Various types of
computers may be employed for the server. For example, the
computer may be a mainframe, a workstation, as well as
other types of processing devices. The memory of a com-
puter may include any memory or database module. The
memory may be volatile or non-volatile types of non-
transitory computer-readable media, such as magnetic
media, optical media, random access memory (RAM), read-
only memory (ROM), removable media, or any other suit-
able local or remote memory component.

The server 120, for example, may be a plurality of
interconnected servers. For example, the servers are inter-
connected by a communication network. The communica-
tion network may be an internet, an intranet, a local area
network (LAN), a wide area network (WAN) or a combi-
nation thereof. The servers may be located in a single or
multiple locations. The interconnected servers may be col-
lectively referred to as a server.

The server 120 is configured to store and process
resources requested by client devices 130. A client device
may be a local computing device with, for example, a local
memory and a processor. The memory may be volatile or

US 9,471,303 B2

3

non-volatile types of non-transitory computer-readable
media, such as magnetic media, optical media, random
access memory (RAM), read-only memory (ROM), remov-
able media, or any other suitable local or remote memory
component. Various types of processing devices may serve
as the client device. For example, the client device may be
a PC, a tablet PC, a workstation, a network computer, or a
mobile computing device, such as a laptop, a tab or a smart
phone. Other types of processing devices may also be used.

The environment of the client device may be referred to
as a local or native environment. A client or end-user and
client device may be used interchangeably. For example,
when referring to an end-user, it is understood that the
end-user connects to the communication network using a
client device. The client device may be referred to as the
client side while the server may be referred to as the server
side. It is understood that client devices need not be of the
same type. For example, some client devices may be mobile
devices running of different types of platforms, such as i0S
or Android, while other devices may be desktop or laptop
computers.

In one implementation, the local environment of the client
device includes a user agent 135. The user agent, for
example, may be a web browser. The browser facilitates
communication with the server. For example, the browser
initiates communication to a web server by making a request
for a specific resource using, for example, a Hypertext
Transfer Protocol (HTTP) and the server responds with the
content of that resource. Communication with the server, for
example, may be through internet connection. The internet
connection may be using a mobile telecommunication net-
work, such as a 4G network. Other types of connections to
the server may also be useful. An end-user may access the
server by, for example, having a user account.

In other implementations, the environment 100 may be a
cloud-computing environment. In such cases, the intercon-
nected servers 120 form a cloud. The cloud, for example,
hosts and processes resources, such as applications and data,
as well as other resources. Different servers may be used to
store or process different resources. Such hosting and pro-
cessing may be considered as cloud services. Various types
of cloud services may be provided. The cloud services may
be provided in a public, private or hybrid network. The cloud
services may be provided by a cloud service provider. For
example, the cloud services may be SAP HANA Cloud
Platform provided by SAP SE. Other types of clouds and
cloud providers may also be useful. A client device 130
accesses resources on the cloud using, for example, a
browser 135. Other configurations of the environment may
also be useful.

The environment 100 includes an application (App)
development system 150. The App development system 150
may be a software tool that is employed in the development
of Apps. The development tool, for example, is used to
develop web Apps. In one implementation, the development
tool is an integrated development environment (IDE). The
IDE may be a wizard-based IDE. For example, the IDE
includes wizards to guide the developer in developing Apps.
In one implementation, the IDE is web-based IDE residing
in the server 120. In some implementations, the IDE resides
on the cloud. The web IDE is accessed by a web browser 135
on a client device 130. For example, an end-user, such as a
developer of Apps, may log on to the cloud, accessing the
IDE from the web browser of a client device. The IDE, for
example, may be a SAP Web IDE from SAP SE. Other types
or configurations of IDEs may also be useful.

10

15

20

25

30

35

40

45

50

55

60

4

In one implementation, the server includes a fagade
framework 160. The fagcade framework, for example, may be
a thin facade framework. For example, the framework code
for a project is lightweight. The framework, from an archi-
tecture perspective, serves as a layered interface of an App.
The fagade framework facilitates in developing both web
and hybrid versions of an App using a unified code solution.
For example, one code base is used to generate both a web
App and a corresponding hybrid version of the web App.
With respect to the hybrid version, it includes on-device
features not included in the web version. In some imple-
mentations, the facade framework facilitates demonstrating
and testing of an App. In the case of a hybrid App, the fagade
framework provides data from the device.

The fagade framework may be integrated into the IDE.
For example, the fagade framework may be integrated as a
plug-in function of a web IDE. In other implementations, the
fagade framework may serve as a moderator. For example,
the facade framework may serve as a moderator running in
an App. The framework may coordinate various functions,
such as bootstrap, logic flow and libraries, depending on the
App type. Other configurations of the fagade framework and
web IDE may also be useful.

As described, the facade framework enables a project
requiring both web and hybrid versions to be completed
using a unified code solution. This enables developers and
managers to simply focus on development and management
of one base code through the whole life cycle of the project.

FIG. 2 shows a simplified block diagram of an embodi-
ment of an App development system 150. As shown, the App
development system includes various modules for develop-
ing a web App. In one implementation, the App development
system includes a Ul module 251, a resource module 253
and a code module 255. Providing different or additional
modules may also be useful.

The Ul module 251 may be a graphical UI (GUI) module.
The Ul module enables a user to navigate the IDE. For
example, the Ul may include a menu bar with commands or
functions that a user can select. The commands and func-
tions facilitate in the process of creating, testing and deploy-
ing the App. In one implementation, the Ul may be based on
SAP UIS. Other types of Uls may also be useful.

The resource module 253 includes resources for creating
or developing a web App. For example, the resource module
includes various templates for different types of Apps. For
example, templates, such as Kapsel App templates, Fiori
Templates may be provided in the resource module. Provid-
ing templates for other types of Apps may also be useful.
The resource module may include other types of resources
for developing Apps. Such resources may include design
resources, such as layout command resources. For example,
mobile controls and mobile Ul components, as well as
others, may be included in the resource module.

The code module 255 facilitates coding for the App. For
example, a user may employ the code module to generate
codes for the App. In one implementation, the code modules
include a code editor for manual coding as well as auto-
coding capabilities, such as coders, for completing codes.
The generated codes may be modified using the code editor.

In one implementation, the App development system
includes a fagade framework 160. The fagade framework
facilitates in developing both web and hybrid Apps from one
App code base. For example, the App code base is used to
generate both a web App and a corresponding hybrid version
of the web App. The fagade framework may be a plug-in
function of the App development system and serves as a
moderator running in an App. The fagade framework may be

US 9,471,303 B2

5

integrated into a development tool chain for App develop-
ment. Other configurations of the fagcade framework may
also be useful.

Other modules, such as a preview module and a deploy-
ment module (not shown) may also be provided. The pre-
view module facilitates previewing an App that has been
developed or is under development while the deployment
module includes functions to facilitate deployment of the
App. The App may be deployed to a mobile platform and
mobile device. The mobile platform, for example, may be a
mobile server from SAP SE such as, SAP Mobile Platform
(SMP) server, which manages the life cycle of mobile
applications on the devices. For example, when the deploy-
ment command is selected, the deployment module config-
ures the App, simplifies settings, builds the App and deploys
it. Deployment functions, for example, may be included in
the IDE. Other configurations of the deployment functions
may also be useful.

FIG. 3 shows a simplified block diagram of an embodi-
ment of a fagade framework 160. As shown, the fagade
framework includes various modules for generating hybrid
and web versions of a project from one App code base. In
one implementation, the facade framework includes a uni-
fied interface module 340, a hybrid library module 370 and
a web library module 380. Providing different or additional
modules may also be useful.

The hybrid library module includes a set of application
program interfaces (APIs) 372. The APIs, for example, are
abstract APIs. The APIs in the hybrid library used in the
project are packaged together with a hybrid version of the
project. The various APIs correspond to hybrid features,
which may be employed by an App. In one implementation,
the hybrid library module includes APIs, which may be used
in a project. For example, the hybrid library module includes
APIs corresponding to all native features on, for example, a
mobile device. The hybrid library may include a contacts
API 372,, a device API 372,, a geolocation API 372;, a
camera API 372, and a file API 372, as well as other APIs
(not specifically shown). Other types of APIs for other
services or features of a device may also be included. The
hybrid library module includes a hybrid registration unit
378. The hybrid registration unit registers the library path of
the APIs called. This is included in the bootstrap code that
will be packaged.

The web library module includes a set of application
program interfaces (APIs) 382. The APIs, for example, are
abstract APIs. The APIs in the web library used in the project
are packaged together with a web version of the project. The
packaged APIs in the web App are merely pass-through APIs
without any real function. The various APIs correspond to
hybrid features, which may be employed by an App. In one
implementation, the web library module includes APIs,
which may be used in a project. For example, the web library
module includes APIs corresponding to all native features
on, for example, a mobile device. The web library may
include a contacts API 382, a device API 382,, a geoloca-
tion API 382, a camera API 382, and a file API 382, as well
as other APIs (not specifically shown). Other types of APIs
for other services or features of a device may also be
included. The web library module includes a web registra-
tion unit 388. The web registration unit registers the library
path of the APIs called to facilitate loading of the libraries
of the web App during runtime.

A code skeleton is constructed for an API. For example,
a code skeleton is constructed for each API. In one imple-
mentation, the code skeleton is an asynchronous code skel-
eton. A code skeleton includes an API call 374 and 384 and

10

15

20

25

30

35

40

45

50

55

60

65

6

an API call back action 376 and 386. The call invokes an API
while the call back action enables a developer to define what
actions are performed on the returned data. In one imple-
mentation, the APIs are unified APIs. For example, codes of
APIs for the hybrid and web libraries are the same. Also, the
set of APIs for the hybrid library and the set of APIs for the
web libraries are consistent. For example, the libraries
include the same APIs. Regardless whether the App is a
hybrid App or a web App, the same APIs with the same
codes are available.

In the case of a hybrid App, the actual feature API calls
of native libraries are implemented. These implementations
from developers are hosted in a specific directory, as indi-
cated in the hybrid registration unit, and will be packaged
together while generating project files finally. On the other
hand, for a web App, nothing is implemented for API calls.
For example, when an API is called in a web App, there are
no actions for callback. By providing two sets of APIs, a web
App or a hybrid App may be produced from a single App
code base.

As for the unified interface, it includes a bootstrap module
347. The bootstrap module, for example, may be embedded
in an index page. The index page 342, may be automatically
loaded in the browser when running the App. For example,
the index page may be accessed when the App is started. The
bootstrap module provides the correct project configuration
and loading of libraries according to whether the App is a
web or hybrid version of the project. The bootstrap module
routes to the bootstrap phase of the code of the App.
Depending on whether the selection is for a hybrid or web
App, the respective libraries are used. For example, the
hybrid library is used for a hybrid App while the web library
is used for a web App. For a hybrid App, the actual feature
API calls of native libraries are implemented. These imple-
mentations from the user are hosted in a specific directory,
as indicated in the hybrid registration unit, and will be
packaged together while generating the project files. For a
web App, the user or developer may implement some
adjustment to optimize the Ul in the APIs. However, there
is no real action for callback response data when the APIs
are called.

The unified interface, for example, is an API library. APIs
used in an App are used from the appropriate library. In the
case of a hybrid App, APIs are used from the hybrid library
(indicated by solid arrows); in the case of a web App, APIs
are used from the web library (indicated by dashed arrows).
The pages enable the user to define return actions of the calls
to the API. In the example, the App may use the contacts API
346, and camera API 346,. Pages 342, and 342, may contain
the implementation of return actions of the calls to the
contact and camera APIs.

The fagade framework, as described, allows App devel-
opers to just focus on application logic development. Wher-
ever developers need to add a hybrid feature API, the hybrid
API in the hybrid library and its callback app logic is added
in a dedicated file. This results in a unified code base for both
web and hybrid versions of the project. After coding is
finished, the unified code can smoothly switch to a web App
or a hybrid App with the corresponding facade framework
library package. For example, a web version of the project
is packaged with APIs from the web library while a hybrid
version of the project is packaged with APIs from the hybrid
library.

The fagade framework may be used to facilitate demon-
stration and testing of a project under development. The
unified code may be previewed as a web or hybrid version
of the project. For example, after finishing the unified code

US 9,471,303 B2

7

and prior to packaging, a user may view the project as a web
or hybrid App. For example, after hybrid code extension, the
unified code can run as either a web or a hybrid App,
facilitated by the fagade framework.

When previewing or demonstrating the project as a web
App, the fagade framework provides the APIs from the web
library. Demonstrating the web App may be achieved using
a web demonstration function included in, for example, the
function menu of the IDE.

In the case of demonstrating the project as a hybrid App,
the fagade framework includes an additional library with
mock up or test data that can be hooked up to the unified
interface. The mock up data is used to test the hybrid App.
For example, the mock up data will be retrieved and returned
as callback response. The mock up data is used for demon-
stration purposes only. For example, the mock up data is not
packaged in the build App. The registration of demonstration
logic is in the bootstrap library, which will be packaged. To
demonstrate the hybrid App, a hybrid demonstration func-
tion may be selected in the function menu of the IDE.

FIG. 4 graphically illustrates a high level environment
400 for developing an App. The developer, for example,
employs a web-based IDE 150 to develop an App. The IDE
may be located on a server of a network. In one implemen-
tation, the server is a cloud server located on a cloud. Other
types of networks or servers may also be useful. The
developer accesses the IDE by, for example, a web browser
135 of an end-user device 130. Other configurations used in
developing an App may also be useful.

The IDE includes various modules for facilitating the
development of an App. The IDE may be used to develop
different projects for different Apps. In one implementation,
the IDE {facilitates in developing a unified solution for both
web and hybrid versions of a project. For example, a unified
code is used to produce a web and a hybrid version of a
project. To facilitate developing a unified code solution for
a project, the environment includes a fagcade framework 160.

The project, as discussed, includes a unified code base for
both web and hybrid versions of the App. The code base for
the project includes using resources 452. The resources may
include web assets 456 for both web and hybrid versions of
the project as well as hybrid features 458 for the hybrid
version of the project. For example, web assets are common
implementations for web and hybrid versions of the project
while hybrid feature codes are specifically for the hybrid
version of the project.

The fagade framework 160 may be integrated into the
IDE. For example, the fagade framework may be integrated
as a plug-in function of the IDE. In other implementations,
the fagade framework may serve as a moderator. For
example, the facade framework may serve as a moderator
running in an App. Other configurations of the fagade
framework may also be useful.

The fagade framework includes a web library module 380
for developing a web App and a hybrid library module 370
for developing a hybrid App. As discussed, the web library
includes APIs used with a web version of the project and the
hybrid library includes APIs used with a hybrid version of
the project. In one implementation, the fagade framework
includes a demonstration library 490. The demonstration
library contains mock up data to interface with the APIs of
the hybrid library when demonstrating a hybrid App. Dem-
onstration of an App may be triggered by selecting the
demonstration function in the IDE menu. The mock up data
is used to simulate the real data from the unified APIs used
by the hybrid App.

10

15

20

25

30

35

40

45

50

55

60

65

8

The fagade framework may facilitate in the deployment of
an App. For example, the fagade framework provides librar-
ies for packaging (building) and deploying web and hybrid
versions of the project. For example, the fagade framework
provides a web library for packaging and deploying a web
version of the project and a hybrid library for packaging and
deploying a hybrid version of the project.

The user may preview or test the project. For example, the
user may preview and test a web version of the project using
the web demonstrator 437 via the web browser. The fagade
framework provides APIs from the web library for preview-
ing or testing. If the web App works accordingly, the user
may initiate the web deployment unit of the deployment
module 440 for packaging and deploying the web App with
the web APIs from the web library.

In the case of previewing and testing a hybrid version of
the project, the user may employ the hybrid demonstrator
438 via the web browser. The hybrid demonstrator may be
the same as the web demonstrator. Alternatively, hybrid
demonstrator in the user device may be a hybrid wrapper app
or a companion App. Other configurations of the hybrid
demonstrator may also be useful. If the hybrid App works
accordingly, the end user may initiate the hybrid deployment
unit of the deployment module 440 for packaging and
deploying the hybrid App with APIs of the hybrid library.

In one implementation, the deployment module is part of
the IDE. Providing other configurations of deployment
module may also be useful. As discussed, the deployment
module is employed to package an App and deploy it. In the
case of deploying a web version of the project, a web
deployment unit 442 is initiated to package and deploy the
web App. The web App is packaged with the APIs from the
web library. The packaged web App is deployed to, for
example, a web server. In the case of deploying a hybrid
version of the project, a hybrid deployment unit 444 is
initiated to package and deploy the hybrid App. The hybrid
App is packaged with the APIs from the hybrid library. The
hybrid App may be deployed to an App store or a cloud
server. Deployment of the hybrid App may also be to a
simulator or a development device.

FIG. 5 illustrates an embodiment of a process 500 for
developing an App. At step 505, code of a base project is
provided. The code of the base project includes web assets.
For example, the code of the base project includes common
code for both hybrid and web versions of a project.

At step 510, the user continues to extend the project code
to a hybrid project. For example the hybrid extension
produces a unified code for both web and hybrid versions of
the project. In one implementation, the hybrid extension is
facilitated by a facade framework, which includes at least
web and hybrid API libraries. Hybrid extension may include
the user providing hybrid feature settings of the project.
Based on the settings, the code includes calls to APIs used
in the project. The code results in a hybrid extended project
at step 520. The hybrid extended project includes a unified
code solution for both web and hybrid versions of the
project. The unified code solution may run as either a web
or hybrid App.

The user may preview the hybrid extended project code
(unified code) as a web App at step 530. For example the
user may preview and test the unified code using the web
demonstrator in the web browser. When previewing the web
version of the project, the facade library provides the APIs
from the web library. If the user is satisfied with the web
version of the project, the user may initiate deployment of
the web version of the project at step 535. For example, the

US 9,471,303 B2

9

web App may be packaged with APIs from the web library
and deployed to a web server.

The user may preview the hybrid extended project code as
a hybrid App at step 540. For example the user may preview
and test the unified code using the hybrid demonstrator. The
demonstration utilizes APIs from the hybrid library and
mock up data from the demonstration library of the fagade
framework. If the user is satisfied with the hybrid version of
the project, the user may initiate deployment of the hybrid
version of the project at step 545. For example, the hybrid
App may be packaged with APIs from the hybrid library and
deployed to an App store or a cloud server. Deployment of
the hybrid App may also be to a simulator or a development
device.

FIGS. 6a-f show screen shots of a UI 600 of an IDE for
developing unified code base for web and hybrid versions of
a project, which is facilitated by a fagade framework. The Ul
for example, is based on SAP UIS. Other types of Uls may
also be useful. In one implementation, the UI is part of a
SAP Web IDE. Other configurations may also be useful.

FIGS. 6a-c, illustrate demonstration of web and hybrid
versions of a project. As shown, the demonstration function
is selected. The demonstration function causes a pop up
window 612 to display. In FIG. 64, the web version of the
project is demonstrated. Since a web App is demonstrated,
the fagade framework provides APIs from the web library.
As such, the web APIs are merely pass-through APIs without
any real function. For example, the camera function is not
implemented in the web App. On the other hand, a hybrid
version of the project is demonstrated in FIG. 65. The fagade
framework provides APIs used from the hybrid library.
Mock up data from the demonstration library is provided to
simulate the real data from the API used. In this case, the
mock up data includes a mock up photo of a phone case used
by the camera API, as shown in FIG. éc.

FIGS. 6d-f1illustrate deployment of a hybrid version of the
project to a device emulator on an end user device, such as
a PC or laptop. Other types of end-user devices may also be
useful. As shown in FIG. 64, the Ul includes an emulator
614 simulating the running of a packaged hybrid version of
a project on a mobile device. FIG. 6e shows the camera of
the mobile device taking a picture. Referring to FIG. 6f, the
picture is used in the hybrid App.

As described, the facade framework may be embodied as
runtime library. The facade framework may be integrated
into an IDE. For example, the fagade framework may be a
plugin. In other implementations, the facade framework may
serve as a moderator. The fagcade framework, for example,
may be stored in a storage medium, such as one or more
storage disks or in memory of a server and/or end-user
devices. Other types of storage media may also be useful.

Although the one or more above-described implementa-
tions have been described in language specific to structural
features and/or methodological steps, it is to be understood
that other implementations may be practiced without the
specific features or steps described. Rather, the specific
features and steps are disclosed as preferred forms of one or
more implementations.

The invention claimed is:
1. A computer-implemented method for developing web
and hybrid versions of an application (App) of a project,

wherein a web App resides on a server and is accessed
using a browser on an end-user device and

wherein a hybrid App is a mobile enabled App having
access to native application program interfaces (APIs),
the method comprising:

20

35

40

45

60

10

providing a facade framework, the fagade framework

comprising,

a web library having a set of web APIs, the web library
includes a web registration unit,

a hybrid library having a set of hybrid APIs, the hybrid
library includes a hybrid registration unit,

wherein the web library and hybrid library comprise
unified APIs in which APIs of the web library and
APIs of the hybrid library have the same code, and

a unified interface for interfacing with the web and
hybrid libraries;

providing base code of a base project using an application

development system, wherein the base code comprises
common code to web assets common to the web and
hybrid versions of the App of the project;

extending the base code to create an extended base code

using the application development system to produce
an extended code of the project, wherein the extended
code includes hybrid features used by the project, the
extended base code serves as a unified code for both the
web and hybrid versions of the App of the project; and

previewing the App using the unified code, wherein a

bootstrap module of the fagade framework loads the

App with APIs from the web library or the hybrid

library according to whether the web version or hybrid

version of the App is running, wherein

when running the web version of the App, an API
which is called is not implemented, the called API
has no callback action according to a routing of the
web registration unit, and

when running the hybrid version of the App, an API
which is called is implemented, the called API
returns an action of a native feature of the called API
using mock up data in the unified interface for the
called APIs according to a routing of the hybrid
registration unit.

2. The method of claim 1 further comprises packaging the
project using a packaging module, wherein packaging com-
prises packaging the unified code with APIs used by the
project from the web library of the fagcade framework to
package the web version of the App.

3. The method of claim 2 further comprises deploying the
web version of the App after packaging to a web server.

4. The method of claim 1 further comprises packaging the
project using a packaging module, wherein packaging com-
prises packaging the unified code with APIs used by the
project from the hybrid library of the fagade framework to
package the hybrid version of the App.

5. The method of claim 4 further comprises deploying the
hybrid version of the App after packaging the hybrid version
of the App.

6. The method of claim 1 wherein the fagade framework
comprises an integrated facade framework integrated with
the application development system as a plug-in feature.

7. The method of claim 1 wherein the web library and
hybrid library comprise corresponding APIs and wherein
corresponding APIs of the web and hybrid libraries each
comprises an asynchronous code skeleton having the same
code that includes:

an API call to invoke the API; and

an API call back defining an action performed on the

returned data of the API call.

8. The method of claim 1 wherein the sets of hybrid and
web APIs in the hybrid library and web library facilitate a
unified solution using the uniform code for both the web and
hybrid versions of the App of the project.

US 9,471,303 B2

11

9. The method of claim 1 wherein the mock up data
comprises mock up data of the native feature of the called
APL
10. The method of claim 1 wherein the bootstrap module
provides a correct project configuration and loading of APIs
used by the project, wherein APIs used by the project are
loaded for the hybrid version of the App of the project from
the hybrid library and APIs used by the project are loaded
from the web library for the web version of the App.
11. The method of claim 1 comprises previewing the
unified code on an end user device.
12. The method of claim 9 wherein the facade framework
comprises an additional library containing the mock up data.
13. The method of claim 1 wherein the bootstrap module
is embedded in an index page which is automatically loaded
when running the App to automatically configure and load
the libraries based on whether the hybrid or web version of
the App is running.
14. The method of claim 1 wherein the facade framework
comprises a demonstration library to provide mock up data
for the APIs when previewing the hybrid version of the App.
15. A fagade framework used in developing web and
hybrid versions of an App of a project,
wherein a web App resides on a server and is accessed
using a browser on an end-user device and
wherein a hybrid App is a mobile enabled App having
access to native application program interfaces (APIs),
the facade framework is disposed in a computing
device with a processor unit and a memory unit, the
fagade framework comprising:
aweb library in the memory unit having a web set of APIs
and includes a web registration unit;
a hybrid library in the memory unit having a hybrid set of
APIs and includes a hybrid registration unit, and
wherein the web set of APIs in the web library and
hybrid set of APIs in the hybrid library are unified APIs
in which corresponding APIs of the web set and hybrid
set comprise the same API codes; and
a unified interface for interfacing with the web and hybrid
libraries, the fagade framework facilitates developing
web and hybrid versions of the App of the project using
a unified code solution for both the web and hybrid
versions of the App, the unified interface includes a
bootstrap module, the bootstrap module when preview-
ing the App uses the unified code by the processor,
wherein
when running the web version of the App, an API
which is called is not implemented, the called API
has no callback action according a routing of the web
registration unit, and

when running the hybrid version of the App, an API
which is called is implemented, the called API
returns an action of a native feature of the called API
using mock up data in the unified interface for the
called APIs according to a routing of the hybrid
registration unit.

16. The facade framework of claim 15 wherein the
bootstrap module provides a correct project configuration
and loading of APIs used by the project, wherein APIs used
by the project are loaded from the hybrid library for the
hybrid version of the App of the project and web APIs used
by the project are loaded from the web library for the web
version of the App.

10

15

20

30

35

40

45

50

55

60

12

17. The fagade framework of claim 15 wherein the web
library and hybrid library comprise corresponding APIs and
wherein corresponding APIs of the web and hybrid libraries
each comprises an asynchronous code skeleton having the
same code that includes:

an API call to invoke the API;

an API call back defining an action performed on the

returned data of the API call; and

wherein the sets of APIs in the hybrid and web libraries

are consistent and have the same codes to facilitate a

unified solution using the uniform code for both the

web and hybrid versions of the App of the project.

18. An application development system for developing
web and hybrid versions of an application (App) of a project,

wherein a web App resides on a server and is accessed

using a browser on an end-user device and
wherein a hybrid App is a mobile enabled App having access
to native application program interfaces (APIs), the system
comprising:

an integrated development environment (IDE) on a com-

puting device having a processor unit and a memory

unit for developing the web and hybrid versions of the
App of the project; and
a fagade framework, the facade framework comprising,
a web library in the memory unit having a web set of
APIs and includes a web registration unit,
a hybrid library in the memory unit having a hybrid set
of APIs and includes a hybrid registration unit, and
wherein the web set of APIs in the web library and
hybrid set of APIs in the hybrid library are unified
APIs in which corresponding APIs of the web set and
hybrid set comprise the same API codes,
a unified interface for interfacing with the web and
hybrid libraries, and
wherein the facade framework facilitates developing
web and hybrid versions of the App of the project
using a unified code solution for both the web and
hybrid versions of the App, the unified interface
includes a bootstrap module, the bootstrap module
when previewing the App uses the unified code by
the processor, wherein
when running the web version of the App, an API
which is called is not implemented, the called API
has no callback action according to a routing of
the web registration unit, and

when running the hybrid version of the App, an API
which is called is implemented, the called API
returns an action of a native feature of the called
API using mock up data in the unified interface for
the called APIs according to a routing of the
hybrid registration unit.

19. The system of claim 18 wherein the unified interface
comprises the bootstrap module providing a correct project
configuration and loading of APIs used by the project,
wherein the APIs used by the project is loaded for the hybrid
version of the App of the project from the hybrid library and
APIs used by the project are loaded from the web library for
the web version of the App.

20. The system of claim 18 wherein the fagade framework
is integrated with the IDE as a plug-in feature.

#* #* #* #* #*

